Reintroducing electrostatics into protein X-ray structure refinement: bulk solvent treated as a dielectric continuum.
نویسندگان
چکیده
Structural refinement of proteins involves the minimization of a target function that combines X-ray data with a set of restraints enforcing stereochemistry and packing. Electrostatic interactions are not ordinarily included in the target function, partly because they cannot be calculated reliably without a description of dielectric screening by solvent in the crystal. With the recent development of accurate implicit solvent models to describe this screening, the question arises as to whether a more detailed target function including electrostatic and solvation terms can yield more accurate structures or somewhat different structures of equivalent accuracy. The Generalized Born (GB) model is one such model that describes the solvent as a dielectric continuum, taking into account its heterogeneous distribution within the crystal. It is used here for X-ray refinements of three protein structures with experimental diffraction data to 2.4, 2.9 and 3.2 A, respectively. In each case, a higher resolution structure is available for comparison. The new target function includes stereochemical restraints, van der Waals, Coulomb and solvation interactions, along with the usual X-ray pseudo-energy term, which employs the likelihood estimator of Pannu and Read. Multiple simulated-annealing refinements were performed in torsion-angle space with a conventional target function and the new GB target function, yielding ensembles of refined structures. The new target function yields structures of similar accuracy, as measured by the free R factor, map/model correlations and deviations from the high-resolution structures. About 10% of side-chain conformations differ between the two sets of refinements, in the sense that the two ensembles of conformations do not completely overlap. Over 75% of the differences correspond to surface side chains. For one of the proteins, the GB set has a greater dispersion, indicating that for this case the conventional target function overestimates the true precision. As GB parameterization continues to improve, we expect that this approach will become increasingly useful.
منابع مشابه
Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions.
We present a new continuum solvation model based on the quantum mechanical charge density of a solute molecule interacting with a continuum description of the solvent. The model is called SMD, where the "D" stands for "density" to denote that the full solute electron density is used without defining partial atomic charges. "Continuum" denotes that the solvent is not represented explicitly but r...
متن کاملImplicit solvent models.
Implicit solvent models for biomolecular simulations are reviewed and their underlying statistical mechanical basis is discussed. The fundamental quantity that implicit models seek to approximate is the solute potential of mean force, which determines the statistical weight of solute conformations, and which is obtained by averaging over the solvent degrees of freedom. It is possible to express...
متن کاملCombining implicit solvation models with hybrid quantum mechanicalÕ molecular mechanical methods: A critical test with glycine
A combined approach to study reactions in solution in which the solute and a number of solvent molecules are described with a hybrid quantum mechanical/molecular mechanical ~QM/MM! method, and the bulk solvent is represented by a polarizable continuum model ~PCM! has been implemented. In this way, both short-range effects of the first-solvation shell and long-range electrostatics due to the bul...
متن کاملInfluence of the solvent structure on the electrostatic interactions in proteins.
The proper estimation of the influence of the many-body dynamic solvent microstructure on a pairwise electrostatic interaction (PEI) at the protein-solvent interface is very important for solving many biophysical problems. In this work, the PEI energy was calculated for a system that models the interface between a protein and an aqueous solvent. The concept of nonlocal electrostatics for interf...
متن کاملCombining conformational flexibility and continuum electrostatics for calculating pK(a)s in proteins.
Protein stability and function relies on residues being in their appropriate ionization states at physiological pH. In situ residue pK(a)s also provides a sensitive measure of the local protein environment. Multiconformation continuum electrostatics (MCCE) combines continuum electrostatics and molecular mechanics force fields in Monte Carlo sampling to simultaneously calculate side chain ioniza...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Acta crystallographica. Section D, Biological crystallography
دوره 59 Pt 12 شماره
صفحات -
تاریخ انتشار 2003